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Abstract - We consider the Cauchy problem of recovering both Neumann and Dirichlet data on the
inner part of the boundary of an annular domain, from measurements on some part of the outer bound-
ary. Using tools from complex analysis and Hardy classes approximation, we provide a constructive and
robust identification scheme, together with numerical experiments.

1. INTRODUCTION

1.1. Motivation

The problem we are dealing with in this contribution is to recover both Dirichlet and Neumann boundary
data on the internal boundary of an annulus, or a Robin coefficient which is actually the quotient of these
data, from measurements on some part of the outer boundary. Such a problem arises for example in
corrosion detection in tubular domains, or in electroencephalography applications of recovering epilepsy
centers in a brain. In such a case, the annular domain is derived from the head by a conformally mapping
[9]. Such problems have been widely studied for simply connected domains, that can be conformally
mapped on the unit disk [4]. The method we wish to generalize to annular domains is to construct
harmonic approximations by solving a bounded extremal problem there. Such a construction uses an
explicit asymptotic expansion of the harmonic approximant, together with the determination of the
actual bound of that approximant, stabilizing the whole algorithm by a cross validation procedure.

To that end, the first issue to tackle is to get explicit asymptotic expansions in annular domains.
Provided full data are available on the whole of the outer boundary, such formulae have been obtained
in [6]. In the present work, we present a numerical algorithm making use of them has been set up. The
regularization has been achieved by characterizing the actual bound as the unique zero of an appropriate
function. The algorithm is proved to be robust with respect to noise. The first part of this contribution
is devoted to presenting the case of full data on the outer boundary, including theoretical results (explicit
formulae, stability and robustness), as well as numerical experiments. However, full data cannot be
expected in several cases, and especially in electroencephalography applications. When data are lacking
on some part of the external boundary, explicit formulae of the analytic approximant have therefore been
sought and obtained, and used as a basic tool in the algorithmic part. Regularization can be obtained by
the cross validation technique present in [5], needing to devote some part of the outer boundary data to
that task, which can be handled by the explicit formulae. Characterizing the actual bound as the unique
zero of an appropriate function, moreover quite easy to compute, turns out to be however a cheaper way
to proceed, and most efforts have therefore been focused on it. We shall be presenting and comparing
numerical results using both these methods.

1.2. Inverse problem
More precisely, let D be the unit disc and G be the annulus G = D \ sD for some fixed s with 0 < s < 1
and denote 0G = T U sT.
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Let I be a non-null measurable subset of T, and let J = G \ I. We consider the following inverse

problem: given functions ug and @, or a number of pointwise measurements, with ® # 0, find a function
g, such that a solution u to

Ay =0 inG (%)
U =ug onl (i) (1)
Opu =@ onl (i)

also satisfies
Ophu+gqu=0on J, (2)

where 9,, stands for the partial derivative w.r.t. the outer normal unit vector to T. In the thermal
framework, ug and @ correspond to the measured temperature and to the imposed heat flux on the outer
boundary of some plane section of a tube, while ¢ is the exchange Robin coefficient to be recovered on
the associated inner boundary.

Let ¢, C >0 and introduce the following class of "admissible” Robin coefficients

A" ={geC™J), |¢®|<C, 0<k<mn, and ¢>c}

Theorem 1.1 [5] Letn >0, ® € W™(I), ® >0, ® # 0 and assume that ¢ € A™ for some constants
¢, C > 0. Then there ezists a unique function u € W™3/22(Q), whence ug € W™tL2(8G), solution to
(1)s, (1)is; and (2). Further, there exist constants m > 0 and & (depending on the class A™) such that
for all g € A™ and ® € W™2(I),

u>m>0 on J,

and
| wllwn+i20a) < K-

The proofs of the above results rely on shift and Sobolev imbeddings Theorems, together with the Hopf
maximum principle.

The next identifiability property ensures the uniqueness of solutions ¢ to the inverse problem, which
is a necessary prerequisite for stability issues to make sense.

Theorem 1.2 Let ® € L?(I), ® >0, ® 20 and g1, g2 € A°. Let u; and uy be the associated solutions
of ()i, (1w and (2). If ua,, = ug,, then g1 = ga.

1.3. Harmonic conjugate

Let & € L?(I) and assume that ¢ € A°. From Theorem 1.1, u),, € W"2(8G). Then there exists
a function v harmonic in G such that 9 v = 9,4 on IG, where 9y stands for the tangential partial
derivative on 8G, from Cauchy-Riemann equations. Hence, v is given on I up to a constant by

6
vh(e”) =/g &(e') dr.
0

Further, from the M. Riesz theorem [8, Thm 4.1], the harmonic conjugate operator is bounded in L?(8G),
whence v|,, € W2(8@). Thus, f = u+iv is analytic in G and f|,, € WH?(8G); it is given on I by

9
F(e?) = ug(e®) +z'/ () dr. (3)
o
Also, on J, 5 5 s
_ _ﬁ _ 9Im
1=~ = " Ref (4)

which gives the link to be used between ¢ and f, in order to recover ¢ from approximations to f on I of
the boundary 9G.
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2. BOUNDED EXTREMAL PROBLEM

2.1. Hardy classes of circular domains
Let G be a circular domain, that is, a domain consisting of the open unit disc from which a finite number
of pairwise disjoint closed discs have been removed:

N
G =D\ (J(a; +n;D), (5)

=1

with the obvious inequalities satisfied by the a; and r; for j = 1,...,N. We write D; = a; + r;D for
1 < 7 < N. Let I denote the boundary of G. We normalize the Lebesgue measure on I' so that each
circle I'; composing it is given unit measure.

The Hardy spaces H?(G) on the domain G were defined by Rudin [10] in terms of analytic functions
f such that |f(2)|? has a harmonic majorant on G, that is, a real harmonic function u(z) such that
|£(2)|P < u(z) on G. It is also possible to define the Hardy spaces H?(9G) for 1 < p < 00, as the closure
in LP(8G) of the set Rg of rational functions whose poles lie in the complement of G. This approach,
similar to the one in [3], was taken in [7]. The spaces H?(G) and HP(8G) are then isomorphic in a
natural way, and so we identify the two spaces.

Below, we stick to the most completely analysed example of the annulus G = D\ sD for some fixed
s with 0 < s < 1 and to the Hilbert case p = 2. Here, the Lebesgue measure on G is normalized so that
the circles T and sT each have unit measure.

The space H?(8G) has a canonical orthonormal basis consisting of the functions

en(2) = (2" /V1+ 82" )nez,

and it can be written as an orthogonal direct sum
H*(8G) = H*(D) & HZ(C )\ sD)

of elementary Hardy spaces, by taking the closed linear spans of (€, )n>0 and (en)n<o respectively. Here
HZ(C\ sD) is the Hardy space of functions analytic on the complement of sD, with L? boundary values,
and vanishing at infinity. It should be noted that a similar decomposition applies to general spaces
H?(8@), but the direct sum is no longer orthogonal in the case p # 2.

So, a function f € H?(G) has the following expansion:

f(z) = Z anz™, where || f|* = Z (14 8*™)|an|* for z € G.

nez nez

We write Pra(ryg = X1 g for the function in L?(8G) that coincides with g on I and vanishes on J. The
definition of Pp2( sy is analogous.

2.2. Approximation in Hardy classes
We assume that T =[-8y, 6p] C T, 0 < 6y < 7. We write L2(0G) = L?(I) & L?(J). We suppose
that we are given f € L?(I) and we wish to approximate f as well as possible by the restriction to
I of an H%(8G) function i.e. Prapyg for g € H*(9G). In view of the results established in [7], the
space Pr2( H?(8G) is dense in L?(I). Then there will exist a sequence (g,) of H*(0G) functions such
that || Pr2(ry gn — fllL2(ry — 0. However, if f # Pra;yg for any g € H*(8G) then it will follow that
|Pr2¢ sy gnllz2(sy — 00, ie. the approximation problem is ill-posed.

This motivates the following bounded extremal problem BEP.

Problem 2.1 Let f € L*(I)\ P2y H*(8G), f1 € L*(J) and M > 0. Find o function g € H*(0G) such
that ||g — f1”L2(J) <M and

If = gllzay = inf{[|f —¥llzery : ¥ € H*OG), ||¥ — fillez(sy < M} (6)

We shall require the solution to the BEP for H2(8G), which can expressed as follows. If 7 is the
Toeplitz like operator on H?(0G) defined by 7g = P96y Pr2(s) 9 = Pu2(ac) X9, then the solution g
of Problem 2.1 is given by the formula

(1+AT)g = Pyrae) [f +(1+X) fi],
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for the unique A > —1 such that |lg — fillz2(s) = M.

Notice that the map x — 7, for x € L*°(0G) is linear and contractive. It is, in fact, isometric. If
the function x = xs is the characteristic function of the component J = sT of the boundary of G, then
Ty, is self-adjoint, 0e(7,,) = {0,1}, and 0 and 1 are not eigenvalues of 7, ,. Thus, the spectrum of 7, ;
consists of {0,1} and eigenvalues of finite multiplicity in (0, 1) which accumulate at 0 and 1. Hence, the
spectrum of 7, is disconnected, in fact, totally disconnected (see [1, 11]).

We may now apply the theory above to obtain the solution to the BEP for H2(8G), which can
expressed as follows.

Whenever &1 is defined on I and x3 on J, we write k1 V ko for the function equal to k1 on I and
K9 on J.

It can be checked that, if we denote by ¢the function in L?(0G) defined by

G:=fVO+0V I+,
then we have

Lemma 2.1

Qp + bps?™

Pr2ac) ¢(2) = Z

2n ?
nez 1+s

where

1 % . . 27 —8o ) '

Ap = — f(ez9)e—zn9 do + (1 + )\) fl(ezﬂ)e—zn(} |,

27 —6o 0

and o
n_ 1t " 0y —inf
bps™ = o Jy fi(se™)e de.

Lemma 2.2 Let g € H?(8G) such that g(2) = zgnz”’ for z € G and T the Toeplitz operator. Then
neZ

1 09 sin (m — n)fo
Tg(2)=) = | {1+ —— )~ et | 2™, 7
9(2) Z:1-|—52" (g ( o 7r> 29 7(m —n) ‘ )
neZ m#n
Then one can calculate the solution g of Problem 2.1 by solving the following system:
(1+XT)g=8.

On the Fourier basis, the operator 7 is a semi-infinite Toeplitz matrix: for n,m € Z

1 0,
— (1—1—52”——0) whenn=m
T — 1+3n ™
m 1 sin(m—n)fy

1+ w(m—n)

when n # m,

and
_an + bas?”

T L4
The behavior with respect to A of the error e(A) and of the constraint M ()) defined by:

e(A) = 1f =92y, M) =lg(A) = fillzny
is smooth and monotonic. In particular, as A\, —1,
e(A)\ 0, M(X) /oo, if f¢H?(8G), M(X) / |If — fillasy, if f € H?(9G).

These are simple generalizations of results found in [2, Section 3].
From now on, and for simplicity, we choose f; = 0.
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2.3. Continuity of the solutions with respect to the data
In this Section, we shall be concerned with continuity properties of the solutions of Problem 2.1 with
respect to the data f and M. Let ¥ be the mapping defined by:

T L*(I) xR, — H*(3G)
(f, M)~ g(f, M),

with g(f, M) is the solution of Problem 2.1 associate to the data f and M. Let D = {(h,M) €
H*(0G) ) x Ry | [ A llpeesy < M}

Theorem 2.1 The mapping ¥ is continuous on the whole L?(I) x RY  with respect to the weak topology
of H*(8G), whereas it is only continuous on (Lz(I) x R )\D, with respect to its strong topology.

Steps of proof:
We define the mapping ¢y for f € L?(I) fixed, by

e+ R =Ry
M — ” PLZ(I)g(.fy M) - f ”Lz(I) .
Let ( fn, My ) be asequencein L2(I) xR such that f, strongly converges to f in L?(I) and a sequence

M,, convergesto M >0 in R}.
The stages of proof are the following ones:

1. ¢y is continuous in R} .

[\

. Pra(yg ( fa, My) strongly converges to Prapyg (f, M) in L*(I).

[9%]

. Prayg( fn, My) weakly converges to Prapyg( f, M) in H*(9G).

4. ¥ is not continuous in D.

3. IDENTIFICATION OF ROBIN TYPE COEFFICIENTS AND NUMERI-
CAL RESULTS

We present in this paragraph an actual and original numerical method allowing to resolve the inverse
problem of identification of Robin coeflicients. Still in the thermal framework, once the flux and the
temperature at the inaccessible boundary J, have been computed, we can evaluate the Fourier heat
transfer coeflicients ¢ from eqn.(4).

The bounded extremal Problem 2.1 is then solved for s = 0.6 and for f(z) = —2+1/z, which provides
us with the trace on I of the harmonic function v = Re(f) together with that of its normal derivative,
Opu = GgIm(f) for the constrained My = || f|lz2(s) = 2.91992407. If q is associated to u and J,u, and
Qeomp from Re(g) and 0,Re(g), we obtain the plots of Figure 1. Observe that the results are quite good,
though the function to be recovered on J possesses a singularity in the plane (here at (z,y) = (0,0)).

The results of continuation established in Theorem 2.1 indicate, that if one wants to find a best
approximant g, it is necessary to choose a constraint sufficiently close to Mo = ||fl|z2(s). Figure 2
confirms this observation.

Now the constraint My is an unknown of the problem, given that it is expressed itself according to
f on J while measurements are made only on I. It is so useful to give a method allowing to determine
this constraint.

3.1. Algorithm

Assume that we are given some nonnegative flux & such that ® # 0 and let u; be the measurements
performed on I C T.

1. Compute from the available data the restriction to I of the analytic function f = uq +i [ @ db;

2. Solve the BEP related to the data f on I, and a suitable constraint M > 0 and a reference function
fi =0 defined on J. This gives g = g(f;;, M) on G;
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Figure 2. Plot of (g, f) and (gcomp, ¢) where 8y = 47 /5 for M = 2.5.
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Figure 4. Plots of (g, f) and (geomp, q) for 8y = 47 /5 with noise 1%.

3. Compute
_ 89 Im(g)

Re(g)

Clearly the choice of M is crucial in this algorithm. There are several possible methods for determining
a suitable value. Omne such is to use part of the avaible data to obtain an estimate for M as in [5]. An
alternative is an iterative process based on a fixed point argument, allowing one to compute a solution
corresponding to an appropriate value of M.

The second method described above gives an obtained value of M = 2.924242424 for the correct
value of the constraint My = 2.91992407.

Figures 3 and the following ones present the plots of (g, f) and (geomp, ¢) for this value of M.

3.2. Noisy data

Noise is generated by a random variable whose uniform norm ranges from 1% to 10% of ||f||c. As
expected from the robustness results of the above Subsection 3.1, the data extension process is less
sensitive to noise than the Robin coefficient recovery method (Figures 4-6), although this latter is fairly
robust.



05

-1

05

-t

Approximation on sTand T

JO3

Robin coefficients on T

T T T LR e S

0.34
0.33

0.32

' 1 L

3 32 34

Robin coefficients on sT

T T

n
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4. CONCLUSIONS

The method we have been presenting in this work first reads as a data completion one, solving the Cauchy
problem for the Laplace equation. The problem framework, enriched with a cross validation procedure to
control the instabilities inherent to such problems, turns out to provide an effective and robust method
to build up the data extension.
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